<u>การควบคุมโซนและการทำงานเป็นลำดับ</u>

<u>ตัวอย่าง</u>

อุปกรณ์ที่มีที่อยู่ **01, 02 และ 03** จะเข้าร่วมในการทำงานเป็นลำดับ (Sequencing)

- หนึ่งในอุปกรณ์จะต้องเป็นหน่วยสำรอง (Standby Unit)
- หนึ่งในอุปกรณ์จะต้องไม่นำมาใช้ในระบบการทำงานเป็นลำดับ ซึ่งอุปกรณ์นี้จะต้องเป็นอุปกรณ์ที่มีหมายเลขที่อยู่ สูงสุดเท่านั้น (เช่น ในกรณีนี้คือที่อยู่ 03)

<u>การกำหนดค่า -> การทำงานเป็นลำดับ</u> เมนู <mark>C802</mark> จะแสดงขึ้นมา ในเมนูนี้คุณสามารถเปิดใช้งาน การควบคุมโซนได้

- อุปกรณ์ที่มีที่อยู่ <mark>(Address) "1"</mark> จะถูกกำหนดให้เป็น **"หน่วยหลัก" (Master Unit)** สำหรับการทำงานเป็นลำดับ
- พารามิเตอร์สองรายการต่อไปนี้ และพารามิเตอร์จากเมนู C804 สามารถตั้งค่าได้เฉพาะผ่านอุปกรณ์ที่มีที่อยู่นี้ เท่านั้น
- อุปกรณ์ที่มีที่อยู่ 2-10 จะถูกกำหนดเป็น "หน่วยรอง" (Slave Unit) โดยอัตโนมัติ

การตั้งค่า:

- 1. เลือกรายการเมนู "Active" และตั้งค่าเป็น "YES" เพื่อกำหนดให้อุปกรณ์อยู่ในโซนการทำงานเป็นลำดับ
- 2. เลือกรายการเมนู "Number Total Units" และตั้งค่าจำนวนอุปกรณ์ทั้งหมดในโซน (1-10)
- 3. เลือกรายการเมนู "Number Backup Units" และตั้งค่าจำนวนอุปกรณ์สำรองในโซน (0-9)

• Press keys in the order 1-2-3-4.

การตั้งค่าการทำงานเป็นลำดับ

(Sequencing Configuration)

- 1. เลื่อนเมนูไปที่ <mark>"C804"</mark>
- กำหนดระยะเวลาของรอบการหมุนเวียน (Rotation Cycle) เป็นหน่วยชั่วโมง
 - สามารถตั้งค่าได้สูงสุด 32,767 ชั่วโมง
- 3. กำหนดประเภทของการหมุนเวียน (Rotation Type)
 - Time+Manual: ทำงานตามเวลาและสามารถสั่งเปลี่ยนด้วยตนเอง
 - Manual: ทำงานโดยการสั่งเปลี่ยนด้วยตนเองเท่านั้น
- 4. กำหนดค่าหน่วงเวลาการปิด (Delay OFF Rot.)
 - สามารถตั้งค่าได้ระหว่าง 0-99 วินาที
 - การปิดเครื่องสำรองใหม่จะถูกหน่วงเวลา เนื่องจากเครื่องสำรองที่เริ่มต้นอาจต้องใช้เวลาสตาร์ทก่อนที่จะ เริ่มทำงานร่วมกับระบบระบายอากาศ/ทำความเย็น

การทดสอบการทำงานเป็นลำดับ

- ที่บรรทัดล่างสุดของเมนูนี้ คุณสามารถทดสอบการตั้งค่าการทำงานเป็นลำดับโดยใช้เวลาสลับ 5 **นาที**
- ตั้งค่าพารามิเตอร์เป็น "YES" เพื่อเริ่มการทดสอบ
- ตั้งค่าพารามิเตอร์เป็น "NO" เพื่อปิดการทดสอบ

SEQUENCING	C804
Hours for rot.	168h
Rot.type Time+Mar Delay OFF Rot.	nual 2s
Test 5 minutes	NO

การตั้งค่าโหมดช่วยเหลือ (Assist Mode) – <mark>เมนู C806</mark>

โหมดนี้ช่วยให้หน่วยสำรอง (Standby Unit) สามารถเปิด ทำงานได้เมื่ออุณหภูมิสูงกว่าค่าที่ตั้งไว้ (Setpoint) ตามค่าที่ กำหนด

- SEQUENCING C806 ----ASSIST MODE-----Capacity Assist YES Assist start 1.0K Assist hysteres. 0.3K Fan Ener9y Assist NO
- 1. ตั้งค่าโหมดช่วยเหลือของอุปกรณ์นี้
 - ไปที่เมนู "Capacity Assist" และตั้งค่าเป็น "YES"
- 2. กำหนดค่าจุดเริ่มต้นของโหมดช่วยเหลือ (Assist Start)
 - ตั้งค่าความแตกต่างของอุณหภูมิจากค่าที่ตั้งไว้ในเมนู "Assist Start"
- 3. กำหนดค่าฮิสเทอรีซิส (Assist Hysteresis)
 - ตั้งค่าฮิสเทอรีซิสให้เท่ากับค่าจุดเริ่มต้น (Assist Start)

โหมดช่วยเหลือด้านพลังงานพัดลม (Fan Energy Assist Mode)

ในโหมดนี้ หน่วยสำรองจะทำงานร่วมกันตลอดเวลาเพื่อช่วยระบายความร้อน

- ส่งผลให้สามารถลดความเร็วของพัดลมและประหยัดพลังงาน
- ปริมาณอากาศรวมจะอยู่ในระดับที่ต่ำกว่าค่าสูงสุดที่เป็นไปได้
- หากอุปกรณ์ตัวใดตัวหนึ่งล้มเหลว ระบบจะเพิ่มความเร็วของอุปกรณ์ที่เหลือเพื่อชดเชย

เงื่อนไขในการใช้งานโหมดนี้:

- 1. ทุกอุปกรณ์ที่เข้าร่วมในโหมดนี้จะต้องอยู่ในโซนการทำงานเป็นลำดับ (Sequencing Zone)
- 2. ต้องมีหน่วยสำรอง (Standby Unit) อย่างน้อยหนึ่งตัว
- 3. ค่าพารามิเตอร์ "Fan Energy Assist" ต้องถูกตั้งเป็น "YES" สำหรับทุกอุปกรณ์

ตัวอย่าง

ในโซนการทำงานเป็นลำดับ (Sequencing Zone) มีอุปกรณ์ ทั้งหมด 7 เครื่อง โดย 1 เครื่องถูกกำหนดเป็นหน่วยสำรอง (Standby Unit)

- ความเร็วที่กำหนด (Nominal Speed) ตั้งไว้ที่ 70%
- ปริมาณอากาศรวมจาก 6 เครื่องที่ทำงานอยู่:

6×70%=420%6 \times 70\% = 420\%6×70%=420%

การคำนวณความเร็วในโหมด Fan Energy Assist Mode

- ในโหมด Fan Energy Assist Mode ทุก 7 เครื่องทำงานพร้อมกัน
- ความเร็วที่ถูกปรับให้เหมาะสมคือ:

 $420\%7 = 60\% \text{frac} \{420\%\} \{7\} = 60\%7420\% = 60\%$

ค่าความเร็วนี้จะแสดงในเมนู O092 ภายใต้บรรทัด "Nominal Speed Grp"

กรณีที่ 1 (Case 1):

- มี 1 เครื่องหยุดทำงาน เนื่องจากเกิด สัญญาณเตือนที่ถูกต้อง (Valid Alarm)
- ขณะนี้มี 6 เครื่องที่ยังคงทำงานอยู่
- ความเร็วของแต่ละเครื่องยังคงเป็น 70%

กรณีที่ 2 (Case 2):

- มี **2 เครื่องหยุดทำงาน** เนื่องจากเกิด สัญญาณเตือนที่ถูกต้อง
- ขณะนี้มี 5 เครื่องที่ยังคงทำงานอยู่
- ความเร็วของแต่ละเครื่องจะถูกปรับใหม่เพื่อคง ปริมาณอากาศรวมที่ 420%

420%5=84%{frac{420\%}{5} = 84\%5420%=84%

ดังนั้น 5 เครื่องที่เหลือจะทำงานที่ความเร็ว 84%

FAN SIGNAL CT	RL 0100
NEGATIVE RA	MP
Group Speed	80%
Setpoint	24.0°
Ramp Start: Idle Speed (rel	>: ^{−2.0K}

การตั้งค่าการแจ้งเตือนที่ถูกต้อง (Valid Alarms)

- ในเมนู <mark>C808 ถึง C817</mark> สามารถกำหนดได้ว่า **การแจ้งเตือนใด** จะเป็นสาเหตุให้
 - อุปกรณ์ ปิดการทำงาน
 - หน่วยสำรอง (Standby Unit) ถูกเปิดใช้งาน
- ้ตั้งค่าพารามิเตอร์เป็น "1" เพื่อเลือกการแจ้งเตือนที่ต้องการให้มีผลต่อการปิดเครื่อง •
- สามารถเลือก **หลายการแจ้งเตือนพร้อมกัน** ได้ •

เงื่อนไขในโหมด Fan Energy Assist Mode

• ในโหมด Fan Energy Assist Mode ไม่สามารถเปิดหน่วยสำรอง ได้ เนื่องจาก ทุกหน่วยสำรองทำงานอยู่แล้ว

- ดังนั้น หากมี หน่วยใดหน่วยหนึ่งหยุดทำงาน จาก Valid Alarm
 - ความเร็วพัดลมของทุกหน่วยที่เหลือจะเพิ่มขึ้น

	 เพื่อรักษา ปริมาณอากาศรวมให้อยู่ในระดับเดิม
SEQUENCING C808 Fan failure 1 Airflow failure 1 Filter clo99ed 0 Water leak detected 1 Power failure 0 Fire/smoke detected 0	SEQUENCING C812 VALID ALARMS Sensor under low limit Supply air temp 0 Return air temp 0 Supply air humidity 0 Return air humidity 0 Diff. air pressure 0
SEQUENCING C809 VALID ALARMS Heater failure 0 Humidifier failure 0 Dehumidifier failure 0 Insufficient coolin9 1	SEQUENCING C814 VALID ALARMS Sensor broken: Sensor 1 0 Sensor 2 0 Sensor 3 0 Sensor 4 0 Sensor 5 0
SEQUENCING C810 VALID ALARMS Sensor over high limit Supply air temp 0 Return air temp 0 Supply air humidity 0 Return air humidity 0 Diff. air pressure 0	SEQUENCING C815 VALID ALARMS Sensor broken: Sensor 6 0 Sensor 7 0 Sensor 7 0 Sensor 9 0 Sensor 9 0
SEQUENCING C817 VALID ALARMS Unit stopped: Monitoring (BMS) 1 Display 1 Weekly schedule 1 Remote by DIN 1 Fire/Smoke 1	SEQUENCING C816 VALID ALARMS Auxiliary Alarm 1 0 Auxiliary Alarm 2 0 Auxiliary Alarm 3 0 Auxiliary Alarm 4 0

การประเมินค่าจากเซนเซอร์ภายในโซน (Sensor Evaluation Within a Zone)

ค่าที่วัดได้จาก **เซนเซอร์อุณหภูมิอากาศย้อนกลับ (Return Air Temperature Sensors)** ภายในโซนสามารถนำมาใช้ใน รูปแบบต่างๆ เพื่อเปรียบเทียบกับค่าที่ตั้งไว้ (Setpoint) และควบคุมความสามารถในการทำความเย็นหรือทำความร้อนของแต่ ละหน่วยในโซน

- สามารถตั้งค่าจุดอุณหภูมิที่ต้องการแยกกันสำหรับแต่ละหน่วย
- เพื่อให้การควบคุมมีประสิทธิภาพและสามารถตรวจสอบได้ง่าย ควรตั้งค่า จุดที่ต้องการเท่ากัน สำหรับทุกหน่วย

การตั้งค่าประเภทการประเมินเซนเซอร์

ต้องเข้าไปที่ **เมนู <mark>C819</mark> ของแต่ละหน่วยในโซนเพื่อตั้งค่าประเภทการประเมิน** เซนเซอร์ มีตัวเลือกดังต่อไปนี้:

- 1. AVRG (ค่าเฉลี่ย)
 - หน่วยจะควบคุมความสามารถในการทำความเย็นโดยอ้างอิงจากความแตกต่างระหว่าง ค่าเฉลี่ยของ เซนเซอร์ทั้งหมด (ที่ใช้วัดค่าอากาศย้อนกลับ) กับค่าที่ตั้งไว้
- 2. MIN (ค่าต่ำสุด)
 - หน่วยจะควบคุมความสามารถในการทำความเย็นโดยอ้างอิงจากความแตกต่างระหว่าง ค่าต่ำสุดของ เซนเซอร์ทั้งหมด กับค่าที่ตั้งไว้
 - ทำงานจนกว่าค่าต่ำสุดจะถึงค่าที่ตั้งไว้
- 3. MAX (ค่าสูงสุด)
 - หน่วยจะควบคุมความสามารถในการทำความเย็นโดยอ้างอิงจากความแตกต่างระหว่าง ค่าสูงสุดของ เซนเซอร์ทั้งหมด กับค่าที่ตั้งไว้
 - ทำงานจนกว่าค่าสูงสุดจะถึงค่าที่ตั้งไว้
- 4. UNIT (ใช้ค่าเซนเซอร์ของหน่วยนั้นเอง)
 - หน่วยจะควบคุมความสามารถในการทำความเย็นโดยอ้างอิงจากความแตกต่างระหว่าง ค่าของเซนเซอร์ ในหน่วยนั้นเอง กับค่าที่ตั้งไว้
 - ค่านี้ยังถูกนำไปใช้ในการคำนวณค่าเฉลี่ยด้วย

💡 หมายเหตุ:

แม้ว่าสามารถตั้งค่าการประเมินเซนเซอร์แยกกันได้สำหรับแต่ละหน่วย **แต่เพื่อให้การควบคุมมีประสิทธิภาพและทำงาน** ร่วมกับระบบสแตนด์บาย (Standby Units) ได้ดี ควรตั้งค่าให้เหมือนกันทุกหน่วย

การดูค่าการวัดของเซนเซอร์ต่างๆ

📌 เมนู <mark>C820</mark>: แสดงค่าของ **เซนเซอร์อุณหภูมิอากาศย้อนกลับ**

- หน่วยแต่ละตัวจะแสดงเป็น "U" ตามด้วย ที่อยู่บัสของ
 Stulz และค่าของเซนเซอร์
- ค่าที่แสดงอาจเป็นค่าที่วัดได้โดยตรง (MIN, MAX, UNIT) หรือค่าที่คำนวณได้ (AVRG)

📌 เมนูอื่นๆ สำหรับเซนเซอร์ประเภทต่างๆ:

- C822: เซนเซอร์อุณหภูมิอากาศจ่ายออก (Supply Air Temperature)
- **C830**: เซนเซอร์อุณหภูมิอากาศภายนอก (Outside Air Temperature)
- C836: เซนเซอร์ความชื้นของอากาศย้อนกลับ (Return Air Humidity)
- C842: เซนเซอร์ความชื้นของอากาศจ่ายออก (Supply Air Humidity)
- C848: เซนเซอร์ความดันแตกต่าง (Differential Pressure)

การแสดงผลค่ากลุ่มเซนเซอร์และการควบคุมความเร็วพัดลมในโหมดควบคุมโซน

1. การแสดงผลค่ากลุ่มเซนเซอร์ (Group Sensor Value - "G")

- หากเปิดใช้งาน Zone Control หน้าต่างเริ่มต้นจะแสดง
 ตัวอักษร "G" และ ที่อยู่บัสของ Stulz
- ค่าอุณหภูมิที่แสดงเป็นค่าที่ตั้งตามประเภทการประเมิน เซนเซอร์ (Sensor Evaluation Type) ที่กำหนดใน เมนู C819

Unit 01: UNIT -> 24.8 °C

Unit 02: UNIT -> 23.8 °C

Unit 03: UNIT -> 26.4 °C

or for example

Unit 01: MAX -> 26.4 °C

Unit 02: MAX -> 26.4 °C Unit 03: MAX -> 26.4 °C or Unit 01: AVRG -> 25.0 °C Unit 02: AVRG -> 25.0 °C Unit 03: <mark>AVRG -> 25.0 °C</mark>

	SEQUE	NCING	C820
Rețu	ng Air	Temp(\circ
115	27.8	112	8.0
Ŭ3:	26.4	Ŭ8:	ŏ.ŏ
04:	-0.0	. Q9:	0.0
05:	0.0	U10:	0.0
		UNITE	24.8

การตั้งค่าการรวมค่าของเซนเซอร์จาก Standby Unit (Menu C818)

และการตรวจสอบสถานะอุปกรณ์ (Menu <mark>C860</mark>)

การตั้งค่าการรวมค่าของเซนเซอร์จาก Standby Unit (Menu C818)

📌 สามารถกำหนดได้ว่าเซนเซอร์ของ Standby Unit จะถูกนำมา คำนวณในการประเมินค่ากลุ่มหรือไม่

- ตั้งค่าเป็น "Include"
 ใช้ค่าของเซนเซอร์จาก
 Standby Unit ในการคำนวณ
- ตั้งค่าเป็น "Exclude" 💥 ไม่ใช้ค่าของเซนเซอร์จาก Standby Unit ในการคำนวณ

ค่าของเซนเซอร์ที่ได้รับผลกระทบจากการตั้งค่านี้:

- 🗹 อุณหภูมิห้อง (Room Temperature)
- 🗹 ความชื้นห้อง (Room Humidity)
- อุณหภูมิอากาศจ่ายออก (Supply Air Temperature)
 - 🖌 ความดันแตกต่าง (Differential Pressure)

📌 สามารถตั้งค่าเวลาหน่วง (Delay Time) สำหรับ Standby Unit ก่อนเข้าร่วมการคำนวณค่าเฉลี่ย

- สำหรับเซนเซอร์ → เพื่อให้ความร้อนสะสม (Heat Build-Up) ระบายออกก่อน
- สำหรับพัดลม → เพื่อรอจนกว่าพัดลมจะถึงความเร็วที่กำหนด (Nominal Speed)

2. การตรวจสอบสถานะของอุปกรณ์ที่เชื่อมต่อกับบัส (Menu <mark>C860</mark>)

- 🔷 "ОК" 🗹 อุปกรณ์ทำงานปกติและสามารถสื่อสารได้
- 🔷 "NO" 💥 อุปกรณ์ ไม่อยู่ในระบบ หรือ มีปัญหาในการสื่อสารผ่านบัส

💡 หากพบสถานะ "NO" ควรตรวจสอบสิ่งต่อไปนี้:

- 1. **ตรวจสอบการเชื่อมต่อบัส** สายสัญญาณอาจหลวม หรือเกิดความผิดพลาดในการเชื่อมต่อ
- 2. ตรวจสอบการตั้งค่าที่อยู่บัสของอุปกรณ์ อาจซ้ำกันหรือถูกตั้งค่าผิด
- ตรวจสอบสถานะพลังงานของอุปกรณ์ อุปกรณ์อาจปิดอยู่หรือมีปัญหาด้านไฟฟ้า
- 4. รีสตาร์ทระบบและตรวจสอบอีกครั้ง หากยังไม่สามารถแก้ไขปัญหาได้

Standby units GRP MATH UNI Sensors : 3 Fans :	:excl ON E Øsec 5sec	lude)ELAY
GRP MATH UNI1 Sensors : 3 Fans :	ON D Øsec 5sec	ELAY
SEQUENC	ING Sheni	C860
TOTAL UNITS: U1: OK U2: OK	U6:	1 NO NO
U3: OK U4: NO	Ŭģ: U9:	NŎ

- Menu C818 ใช้กำหนดว่าจะรวมค่าของ Standby Unit ในการคำนวณหรือไม่ และสามารถตั้งค่าเวลาหน่วงก่อน เข้าร่วมการคำนวณ
- Menu C860 ใช้ตรวจสอบสถานะของอุปกรณ์ทั้งหมดบนบัส โดย "OK" หมายถึงปกติ และ "NO" หมายถึงมีปัญหา ในการสื่อสาร

การกระจายค่าตั้งต้นไปยังตัวควบคุมทั้งหมด (Distributing a Value to All Controllers)

📌 ฟังก์ชันนี้ช่วยให้สามารถตั้งค่าค่าตั้งต้น (Setpoint) สำหรับอุณหภูมิอากาศกลับ (Return Air Temperature) ให้กับทุกตัวควบคุมในโซนการทำงาน (Sequencing Zone) ได้พร้อมกัน

🔷 ช่วยลดความจำเป็นในการตั้งค่าทีละตัวควบคุม

วิธีการเปิดใช้งานฟังก์ชันนี้:

🗹 ตั้งค่า "Group Config" ในเมนู <mark>C821</mark> เป็น "Enable"

📌 ค่าที่ตั้งบนตัวควบคุมหลัก (Master Controller) จะถูกกระจายไปยัง ทุกหน่วยในโซน

📌 ค่าที่ตั้งไว้จะแสดงในบรรทัดด้านล่างของเมนู

ค่าที่สามารถตั้งค่าและกระจายไปยังตัวควบคุมทั้งหมดได้:

- ค่าตั้งต้นอุณหภูมิอากาศกลับ (Return Air Temperature Setpoint)
 → เมนู C821
- ค่าตั้งต้นอุณหภูมิอากาศจ่ายออก (Supply Air Temperature
 Setpoint) → เมนู C826
- ค่าตั้งต้นความขึ้นอากาศกลับ (Humidity Return Air Humidity) → เมนู C838
- ค่าตั้งต้นความชื้นอากาศจ่ายออก (Humidity Supply Air Humidity) → เมนู C844
- ค่าตั้งต้นแรงดันแตกต่าง (Differential Pressure Setpoint) →
 เมนู C853
- ความเร็วพัดลมต่ำสุด (Minimum Fan Speed) → เมนู C856
- ความเร็วพัดลมสูงสุด (Maximum Fan Speed) → เมนู C858

Re	-GRI turi	OUENO OUP S n Air	SENS Te	OR MP("C	821 :>
GROU	P C	DNFI	3: E	nabl	е
GRP	St I	POIN	r:	24.	0°c
	SE -GR	RUEN DUP	ei Ne Sens	ICR	826
GROU	PPT PC	ONFI(3: E	nabl	e.
GRP	St	POIN	Γ:	20.	0°c
Di	-GRU ff f	UUENO DUP S ress	ENS Sure	OR (Pa	855 >
GROU	P CO	ONFIG	i: E	NABL	E
GRP	St F	POINT	•	7.0	Pa

ประโยชน์ของการใช้งานฟังก์ชันนี้

- ลดเวลาในการตั้งค่าระบบ ไม่ต้องตั้งค่าทีละหน่วย
- 🛃 ลดความผิดพลาดจากการตั้งค่าไม่ตรงกัน
- 🛃 เพิ่มความสะดวกในการควบคุมระบบปรับอากาศแบบรวมศูนย์

💡 สรุป:

- 📌 เปิดใช้งาน "Group Config" ใน เมนู <mark>C821</mark> —> ค่าที่ตั้งไว้จะกระจายไปยังทุกตัวควบคุมในโซน
- 📌 ค่าที่สามารถตั้งค่าได้รวมถึงอุณหภูมิ, ความขึ้น, ความดัน และความเร็วพัดลม